Webinars
Sequence- and Structure-Dependent Cytotoxicity of Phosphorothioate and 2’-O-Methyl Modified Single-Stranded Oligonucleotides
OTS2024-08-30T15:58:39+00:00August 21st, 2024|
Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation
OTS2024-09-06T03:30:39+00:00July 25th, 2024|
A Nucleic Acid Approach to Antibody Therapeutics
OTS2024-09-06T03:30:14+00:00July 18th, 2024|
Application of hydrophobically conjugated siRNAs for the treatment of dermatological and muscular diseases
OTS2024-09-06T03:22:58+00:00July 11th, 2024|
Presenter: Dr. Annabelle Biscans (AstraZeneca)
Date: January 27th, 2021
Description:
Small interfering RNAs (siRNAs) have the potential to revolutionize medicine due to their potency, duration of effect, and ability to target previously “undruggable” disease genes. The clinical success of siRNAs is dependent on their efficient delivery to disease tissues. However, as of today, clinically efficient siRNAs are limited to treat liver related diseases only. Robust and safe siRNA delivery in tissues beyond the liver remains a challenge and represents currently unmet technological needs. Thus, developing platforms that enable efficient and safe siRNA delivery to tissues beyond liver is the next milestone for expanding the utility of RNAi technology.
One of the most promising approach is to modulate oligonucleotide delivery through direct chemical modification and conjugation. Full chemical stabilization, identification of optimal conjugates and optimization of siRNA structure and modification content are essential to enabling sustained and robust efficacy following a single administration.
Recording of the Webinar: Click Play to View
In addition, Dr. Biscans would like to make the slides available for download. Click here
Presenter Biography
Dr. Annabelle Biscans
(AstraZeneca)
References
- Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria.
- Balwani M, Sardh E, Ventura P, Peiró PA, Rees DC, Stölzel U, Bissell DM, Bonkovsky HL, Windyga J, Anderson KE, Parker C, Silver SM, Keel SB, Wang JD, Stein PE, Harper P, Vassiliou D, Wang B, Phillips J, Ivanova A, Langendonk JG, Kauppinen R, Minder E, Horie Y, Penz C, Chen J, Liu S, Ko JJ, Sweetser MT, Garg P, Vaishnaw A, Kim JB, Simon AR, Gouya L; ENVISION Investigators.
N Engl J Med. 2020 Jun 11;382(24):2289-2301. - Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia.
Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, Wijngaard PLJ, Curcio D, Jaros MJ, Leiter LA, Kastelein JJP; ORION-9 Investigators.
N Engl J Med. 2020 Apr 16;382(16):1520-1530. - LB002ILLUMINATE-A, A PHASE 3 STUDY OF LUMASIRAN, AN INVESTIGATIONAL RNAI THERAPEUTIC, IN CHILDREN AND ADULTS WITH PRIMARY HYPEROXALURIA TYPE 1 (PH1)
- Garrelfs S, Frishberg Y, Hulton S, Koren M, O’Riordan W, Cochat P, Deschenes G, Shasha-Lavsky H, Saland J, Van’t Hoff W, Fuster DG, Magen D, Moochhala S, Schalk G, Simkova E, Groothoff J, Sas D, Meliambro K, Lu J, Garg P, Gansner J, McGregor T, Lieske J
Nephrol. Dial. Transplant., 2020 Jun 7; 35 Supplement 3 - Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study.
Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, Schmidt H, Waddington-Cruz M, Campistol JM, Bettencourt BR, Vaishnaw A, Gollob J, Adams D.
Orphanet J Rare Dis. 2015 Sep 4;10:109 - Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis.
Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Planté-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB.
N Engl J Med. 2018 Jul 5;379(1):11-21. - Delivery materials for siRNA therapeutics.
Kanasty R, Dorkin JR, Vegas A, Anderson D.
Nat Mater. 2013 Nov;12(11):967-77 - Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics.
Huang Y.
Mol Ther Nucleic Acids. 2017 Mar 17;6:116-132. - Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria.
Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, Desnick R, Parker C, Phillips J, Bonkovsky HL, Vassiliou D, Penz C, Chan-Daniels A, He Q, Querbes W, Fitzgerald K, Kim JB, Garg P, Vaishnaw A, Simon AR, Anderson KE.
N Engl J Med. 2019 Feb 7;380(6):549-558. - The chemical evolution of oligonucleotide therapies of clinical utility.
Khvorova A, Watts JK.
Nat Biotechnol. 2017 Mar;35(3):238-248. - Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo.
Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH, Osborn MF, Echeverria D, Nikan M, Salomon WE, Roux L, Godinho BMDC, Davis SM, Morrissey DV, Zamore PD, Karumanchi SA, Moore MJ, Aronin N, Khvorova A.
Nucleic Acids Res. 2018 Mar 16;46(5):2185-2196 - 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo.
Haraszti RA, Roux L, Coles AH, Turanov AA, Alterman JF, Echeverria D, Godinho BMDC, Aronin N, Khvorova A.
Nucleic Acids Res. 2017 Jul 27;45(13):7581-7592. - Therapeutic siRNA: state of the art.
Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ.
Signal Transduct Target Ther. 2020 Jun 19;5(1):101. - Advanced siRNA Designs Further Improve In Vivo Performance of GalNAc-siRNA Conjugates.
Foster DJ, Brown CR, Shaikh S, Trapp C, Schlegel MK, Qian K, Sehgal A, Rajeev KG, Jadhav V, Manoharan M, Kuchimanchi S, Maier MA, Milstein S.
Mol Ther. 2018 Mar 7;26(3):708-717. - Nonclinical Safety Profile of Revusiran, a 1st-Generation GalNAc-siRNA Conjugate for Treatment of Hereditary Transthyretin-Mediated Amyloidosis.
Sutherland JE, Hettinger JL, Chan A, Gilbert J, Warner GL, Davis WP.
Nucleic Acid Ther. 2020 Feb;30(1):33-49. - Phase 3 Multicenter Study of Revusiran in Patients with Hereditary Transthyretin-Mediated (hATTR) Amyloidosis with Cardiomyopathy (ENDEAVOUR).
Judge DP, Kristen AV, Grogan M, Maurer MS, Falk RH, Hanna M, Gillmore J, Garg P, Vaishnaw AK, Harrop J, Powell C, Karsten V, Zhang X, Sweetser MT, Vest J, Hawkins PN. Cardiovasc Drugs Ther. 2020 Jun;34(3):357-370. - Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity.
Prakash TP, Lima WF, Murray HM, Li W, Kinberger GA, Chappell AE, Gaus H, Seth PP, Bhat B, Crooke ST, Swayze EE. Nucleic Acids Res. 2015 Mar 31;43(6):2993-3011. - 5′-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA-GalNAc Conjugates.
Parmar R, Willoughby JL, Liu J, Foster DJ, Brigham B, Theile CS, Charisse K, Akinc A, Guidry E, Pei Y, Strapps W, Cancilla M, Stanton MG, Rajeev KG, Sepp-Lorenzino L, Manoharan M, Meyers R, Maier MA, Jadhav V.
Chembiochem. 2016 Jun 2;17(11):985-9. - 5′-C-Malonyl RNA: Small Interfering RNAs Modified with 5′-Monophosphate Bioisostere Demonstrate Gene Silencing Activity.
Zlatev I, Foster DJ, Liu J, Charisse K, Brigham B, Parmar RG, Jadhav V, Maier MA, Rajeev KG, Egli M, Manoharan M.
ACS Chem Biol. 2016 Apr 15;11(4):953-60 - The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy.
Biscans A, Caiazzi J, Davis S, McHugh N, Sousa J, Khvorova A. Nucleic Acids Res. 2020 Aug 20;48(14):7665-7680. - 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF.
Shen W, Liang XH, Sun H, Crooke ST.
Nucleic Acids Res. 2015 May 19;43(9):4569-78. - Acute hepatotoxicity of 2′ fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.
Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST.
Nucleic Acids Res. 2018 Mar 16;46(5):2204-2217. - Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity.
Janas MM, Schlegel MK, Harbison CE, Yilmaz VO, Jiang Y, Parmar R, Zlatev I, Castoreno A, Xu H, Shulga-Morskaya S, Rajeev KG, Manoharan M, Keirstead ND, Maier MA, Jadhav V.
Nat Commun. 2018 Feb 19;9(1):723. - Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates.
Brown CR, Gupta S, Qin J, Racie T, He G, Lentini S, Malone R, Yu M, Matsuda S, Shulga-Morskaya S, Nair AV, Theile CS, Schmidt K, Shahraz A, Goel V, Parmar RG, Zlatev I, Schlegel MK, Nair JK, Jayaraman M, Manoharan M, Brown D, Maier MA, Jadhav V. Nucleic Acids Res. 2020 Dec 2;48(21):11827-11844. - Delivery of Oligonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug.
Debacker AJ, Voutila J, Catley M, Blakey D, Habib N.
Mol Ther. 2020 Aug 5;28(8):1759-1771. - siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes.
Matsuda S, Keiser K, Nair JK, Charisse K, Manoharan RM, Kretschmer P, Peng CG, V Kel’in A, Kandasamy P, Willoughby JL, Liebow A, Querbes W, Yucius K, Nguyen T, Milstein S, Maier MA, Rajeev KG, Manoharan M.
ACS Chem Biol. 2015 May 15;10(5):1181-7. - Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing.
Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, Taneja N, O’Shea J, Shaikh S, Zhang L, van der Sluis RJ, Jung ME, Akinc A, Hutabarat R, Kuchimanchi S, Fitzgerald K, Zimmermann T, van Berkel TJ, Maier MA, Rajeev KG, Manoharan M.
J Am Chem Soc. 2014 Dec 10;136(49):16958-61. - Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo.
Rajeev KG, Nair JK, Jayaraman M, Charisse K, Taneja N, O’Shea J, Willoughby JL, Yucius K, Nguyen T, Shulga-Morskaya S, Milstein S, Liebow A, Querbes W, Borodovsky A, Fitzgerald K, Maier MA, Manoharan M.
Chembiochem. 2015 Apr 13;16(6):903-8. - Novel Cluster and Monomer-Based GalNAc Structures Induce Effective Uptake of siRNAs in Vitro and in Vivo.
Sharma VK, Osborn MF, Hassler MR, Echeverria D, Ly S, Ulashchik EA, Martynenko-Makaev YV, Shmanai VV, Zatsepin TS, Khvorova A, Watts JK.
Bioconjug Chem. 2018 Jul 18;29(7):2478-2488. - Less Is More: Novel Hepatocyte-Targeted siRNA Conjugates for Treatment of Liver-Related Disorders.
Weingärtner A, Bethge L, Weiss L, Sternberger M, Lindholm MW.
Mol Ther Nucleic Acids. 2020 Sep 4;21:242-250. - Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles.
Biscans A, Haraszti RA, Echeverria D, Miller R, Didiot MC, Nikan M, Roux L, Aronin N, Khvorova A.
Mol Ther. 2018 Jun 6;26(6):1520-1528. - The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo.
Biscans A, Coles A, Echeverria D, Khvorova A.
J Control Release. 2019 May 28;302:116-125 - Improving siRNA Delivery In Vivo Through Lipid Conjugation.
Osborn MF, Khvorova A.
Nucleic Acid Ther. 2018 Jun;28(3):128-136. - Synthesis and Evaluation of Parenchymal Retention and Efficacy of a Metabolically Stable O-Phosphocholine-N-docosahexaenoyl-l-serine siRNA Conjugate in Mouse Brain.
Nikan M, Osborn MF, Coles AH, Biscans A, Godinho BMDC, Haraszti RA, Sapp E, Echeverria D, DiFiglia M, Aronin N, Khvorova A.
Bioconjug Chem. 2017 Jun 21;28(6):1758-1766. - Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways.
Osborn MF, Coles AH, Biscans A, Haraszti RA, Roux L, Davis S, Ly S, Echeverria D, Hassler MR, Godinho BMDC, Nikan M, Khvorova A.
Nucleic Acids Res. 2019 Feb 20;47(3):1070-1081. - Mechanisms and optimization of in vivo delivery of lipophilic siRNAs.
Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M.
Nat Biotechnol. 2007 Oct;25(10):1149-57 - Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles.
Biscans A, Caiazzi J, McHugh N, Hariharan V, Muhuri M, Khvorova A. Mol Ther. 2020 Dec 19:S1525-0016(20)30681-X.